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Abstract
We give upper bounds for the number of spin- 1

2 particles that can be bound
to a nucleus of charge Z in the presence of a magnetic field B, including
the spin–field coupling. We use Lieb’s strategy, which is known to yield
Nc < 2Z + 1 for magnetic fields that go to zero at infinity, ignoring the spin–
field interaction. For particles with fermionic statistics in a homogeneous
magnetic field our upper bound has an additional term of the order of
Z × min

{
(B/Z3)2/5, 1 + | ln(B/Z3)|2}.

PACS numbers: 3450F, 0365, 0530J

1. Introduction and main result

Let HN,Z,A be the Hamiltonian for N identical particles with spin- 1
2 in the Coulomb field of

an infinitely massive nucleus of charge Z and in a magnetic field B = curl A,

HN,Z,A =
N∑

i=1

(
H

(i)
A − Z

|xi |
)

+
∑
i<j

1

|xi − xj | (1)

with

H
(j)

A = [
σj · (−i∇j + A(xj )

)]2 = (−i∇j + A(xj )
)2

+ B · σj . (2)

Here A ∈ L2
loc(R

3; R
3) is the magnetic potential and σ = (σx, σy, σz) are the usual Pauli

matrices. The Hamiltonian (1) acts on the fermionic (respectively bosonic) subspace of⊗N L2(R3, dx; C
2). We will assume that the ground state energy

E(N, Z, B) = inf spec HN,Z,A (3)

is finite. (Note that the energy depends only on B because of gauge invariance.) A sufficient
condition for this is B ∈ L3/2 + L∞, because is this case |B| + Z/|x| is relatively bounded
with respect to −�, and inf spec HN,Z,A � inf spec

∑N
i=1 (−�i − |B(xi )| − Z/|xi |) by the

diamagnetic inequality [1]. Moreover, we will only consider magnetic fields B such that the
energy E(N, Z, B) is monotonically decreasing in N for fixed Z. That is, we consider fields
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such that we can add additional particles to spatial infinity with arbitrary small magnetic–kinetic
energy. This is in particular the case for a homogeneous magnetic field [2]. We are interested
in the maximal number of particles that can be bound, i.e. the largest N such that E(N, Z, B)

is an eigenvalue. We will denote this ‘critical’ N by Nc, suppressing the dependence on Z and
B. For simplicity we will restrict ourselves to considering identical particles.

Alternatively, one could define the critical particle number by

Ñc = max {N |E(N, Z, B) < E(N − 1, Z, B)}. (4)

With this definition E(N, Z, B) is certainly an eigenvalue if N � Ñc, so Ñc � Nc. Hence
any upper bound to Nc is also an upper bound to Ñc.

It is well known that magnetic fields, at least homogeneous ones, enhance binding. In [3]
it is shown that every once negatively charged ion (i.e. N = Z + 1) has an infinite number of
bound states in the presence of a homogeneous magnetic field of arbitrary field strength B.
And in [2] the lower bound lim infZ→∞(Ñc/Z) � 2 as long as B/Z3 → ∞ is given, which is
in contrast to asymptotic neutrality in the absence of magnetic fields [4].

We will use Lieb’s strategy [5] to derive an upper bound on Nc. The difference between
our considerations and [5] is the coupling of the spin to the magnetic field, i.e. the term
B · σ in the Hamiltonian. Without this term, Lieb derived the bound Nc < 2Z + 1 for any
bounded A that goes to zero at infinity. (The reason why Lieb’s bound does not apply to a
homogeneous magnetic field is that without spin coupling, the ground state energy in this case
is not monotonically decreasing in N since adding a particle at spatial infinity costs at least an
energy |B|.)

Our result is as follows:

Theorem 1 (Upper bound on Nc). Under the conditions stated above,

Nc < 2Z + 1 +
1

2

E(Nc, Z, B) − E(Nc, kZ, B)

NcZ(k − 1)
(5)

for all values of k > 1.

Note that since the ground state energy is monotonically decreasing and superadditive in N

for fixed Z (because the Coulomb repulsion between the particles is positive), E(N, Z, B)/N

is bounded by some function independent of N . Moreover, the best bound in (5) is achieved
in the limit k ↘ 1, which exists since E(N, Z, B) is concave in Z (as an infimum over linear
functions in Z).

To apply theorem 1 to the case of fermionic electrons in a homogeneous magnetic field
B = (0, 0, B), one needs upper and lower bounds to the ground state energy. These were
derived in [2, 6] and are given in section 4.1. The result is the following:

Theorem 2 (Maximal ionization for fermions). Let HN,Z,A be the restriction of (1) to the
fermionic subspace, and let B = (0, 0, B). Then, for some constants C1 and C2, and for all
values of B � 0 and Z > 0,

Nc < 2Z + 1 + C1Z
1/3 + C2Z min

{
(B/Z3)2/5, 1 + | ln(B/Z3)|2}. (6)

Of course we do not believe that these bounds are optimal. One might assume that Lieb’s
bound Nc < 2Z+1 also holds in this case, at least for large Z (compare with the lower bound in
[2] stated above), but it remains an open problem to show this. However, theorem 2 improves a
result obtained in [7], which states that Nc < 2Z + 1 + cB1/2 for the Hamiltonian (1) restricted
to some special wavefunctions in the lowest Landau band, which reduces the problem to an
essentially one-dimensional one.

One might ask how the Pauli principle affects the result in theorem 2. It turns out that the
analogue for bosonic particles is the following:
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Theorem 3 (Maximal ionization for bosons). Let HN,Z,A be the restriction of (1) to the
bosonic subspace, and let B = (0, 0, B). Then for some constant C3 and for all B � 0
and Z > 0

Nc < 2Z + 1 +
Z

2
min

{(
1 +

B

Z2

)
, C3

(
1 +

[
ln

(
B

Z2

)]2
)}

. (7)

In the next section we will give the proof of theorem 1. In section 3 several possible
generalizations are stated, and in section 4 the necessary energy bounds for the case of a
homogeneous magnetic field are given, which will prove theorems 2 and 3.

2. Proof of theorem 1

Let � be a normalized ground state for HN,Z,A. Assume, for the moment, that 〈�||xN |�〉 is
finite. Then

E(N, Z, B)〈|xN |�|�〉 = 〈|xN |�|HN,Z,A�〉

=
〈
|xN |�|

(
HN−1,Z,A + H

(N)
A − Z

|xN | +
N−1∑
i=1

1

|xi − xN |

)
�

〉
. (8)

Because � = ∫
�∗�|xN | dxN is an acceptable trial density matrix, we can use the variational

principle to conclude that

〈|xN |�|HN−1,Z,A|�〉 � E(N − 1, Z, B)〈|xN |�|�〉. (9)

By assumption the energy is monotonically decreasing in N , so〈
|xN |�|

(
H

(N)
A − Z

|xN | +
N−1∑
i=1

1

|xi − xN |

)
�

〉
� (E(N, Z, B) − E(N − 1, Z, B)) 〈|xN |�|�〉 � 0. (10)

Now using the demanded symmetry of �, we obtain〈
�| |xN |

|xi − xN |�
〉

= 1

2

〈
�| |xN | + |xi |

|xi − xN | �

〉
>

1

2
(11)

(the strict inequality follows from the fact that {(x, y), |x − y| = |x| + |y|} has measure zero),
so (10) gives

Z > 1
2 (N − 1) + 〈|xN |�|H(N)

A |�〉. (12)

As in [7] we have for any positive function ϕ(xN)

〈ϕ�|H(N)
A |�〉 =

〈
ϕ1/2�|

(
H

(N)
A −

∣∣∣∣∇ϕ

2ϕ

∣∣∣∣2
)

ϕ1/2�

〉

−i Re

〈
ϕ1/2�|∇ϕ

ϕ
· (−i∇ + A)ϕ1/2�

〉
. (13)

Now 〈|xN |�|H(N)
A �〉 is certainly real, because all the other quantities in equation (8) are real.

So choosing ϕ(xN) = |xN | in equation (13) we obtain

〈|xN |�|H(N)
A �〉 =

〈
|xN |1/2�|

(
H

(N)
A − 1

4|xN |2
)

|xN |1/2�

〉
. (14)
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Using that H
(N)
A � 0 equation (12) reads

N < 2Z + 1 + 1
2 〈�||xN |−1�〉. (15)

Moreover,

〈�||xN |−1�〉(k − 1) = 1

NZ
〈�|(HN,Z,A − HN,kZ,A)�〉

� 1

NZ
(E(N, Z, B) − E(N, kZ, B)) (16)

so we arrive at the desired bound for Nc.
Throughout, we have assumed that 〈|xN |�|�〉 is finite. A priori, this need not be

the case. However, one could arrive at the same conclusions using the bounded function
ϕε(xN) = |xN |(1 + ε|xN |)−1 instead of |xN | in (8), and letting ε → 0 at the end (see [5]).
Note that ∣∣∣∣∇ϕε

ϕε

∣∣∣∣2 = 1

|x|2(1 + ε|x|)2
� 1

|x|ϕε(x)
(17)

so our conclusions remain valid.

Remark 1. Instead of ignoring the kinetic energy in (14) one could use the operator inequality

(−i∇ + A)2 − 1

4|x|2 � 0 (18)

to conclude that

Nc < 2Z + 1 − 2〈�||xN |B(xN) · σN�〉. (19)

This may especially be of interest if |B(x)| � b|x|−1 for some constant b. And for B = 0
Lieb’s bound Nc < 2Z + 1 is reproduced.

3. Generalizations of theorem 1

As in [5] several generalizations of theorem 1 are possible.

• One can allow different statistics from the bosonic or fermionic one, or even consider
independent particles. Moreover, the particles could have different masses and charges.

• Hartree and Hartree–Fock theories can be treated in the same manner.
• One can replace the Coulomb interaction (everywhere) by some positive v(x) = 1/w(x),

with w satisfying

w(x − y) � w(x) + w(y) (20)

and for some constant C

|∇w|2 � C. (21)

Looking at the proof of theorem 1 we see that these two properties are really what we
needed.
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4. Application to homogeneous fields

We will now apply theorem 1 to the case of a homogeneous magnetic field B = (0, 0, B),
and prove theorems 2 and 3. The magnetic potential, in the symmetric gauge, is given by
A = 1

2B × x. The energy in this case will be denoted by E(N, Z, B) ≡ E(N, Z, B). To
derive explicit bounds on Nc, we need upper and lower bounds to the ground state energy
of (1). However, since we are not trying to give the optimal constants, the upper bound
E(N, Z, B) � 0 will suffice for our purposes. So we will concentrate on the lower bounds.
We will distinguish between the fermionic and the bosonic case. Throughout, every fixed
constant will be denoted by C, although the various constants may be different.

4.1. The fermionic case

In [2, 6] the following lower bounds on the ground state energy of (1) were derived:

Lemma 1 (Lower bounds on the fermionic energy). Let λ = N/Z. The ground state
energy of (1) restricted to the fermionic subspace satisfies:

(a) If B � CZ4/3 then

E(N, Z, B) � −CZ7/3λ1/3
(
1 + Cλ2/3

)
. (22)

(b) If B � CZ4/3 then

E(N, Z, B) � −CZ9/5λ3/5B2/5
(
1 + Cλ−2/5

)
. (23)

(c) If B � CZ2 then

E(N, Z, B) � −CNZ2

1 +

[
ln

(
C

λ1/2

(
B

Z3

)1/2

+ 1

)]2
. (24)

Remark 2. The conditions in (a) and (b) are not meant to be complementary. The precise
meaning of part (a) of the lemma, for instance, is that given a constant C1, E(N, Z, B) �
−C2Z

7/3λ1/3(1 + C3λ
2/3) for some constants C2 and C3 (depending on C1) as long as

B � C1Z
4/3.

Remark 3. Part (c) of lemma 1 follows from omitting the repulsion terms in theorem 1.2
(‘confinement to the lowest Landau band’) in [2] and then using the bound (4.11) there.
Although this theorem is applicable for B � CZ4/3, with an additional error term, the result
is simpler for B � CZ2. However, the bound (24) is only of interest for B � CZ3, because
for smaller B (23) is more useful.

Using (5) with k = C > 1 and the bounds in the preceding lemma we find that λc ≡ Nc/Z

satisfies

λc < 2 + Z−1 + Cλ−2/3
c Z−2/3

(
1 + Cλ2/3

c

)
if B � CZ4/3

λc < 2 + Z−1 + Cλ−2/5
c

(
B

Z3

)2/5 (
1 + Cλ−2/5

c

)
if B � CZ4/3

λc < 2 + Z−1 + C

1 +

[
ln

(
C

λ
1/2
c

(
B

Z3

)1/2

+ 1

)]2
 if B � CZ2.

(25)
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Using λc � 1 (which we can of course assume, since otherwise (6) is trivial) and ln(x + 1) �
| ln x| + 1 for x > 0 on the right-hand side of (25) these three bounds imply the result stated in
theorem 2. Note that in particular

lim sup
Z→∞

Nc

Z
� 2 if B/Z3 → 0. (26)

4.2. The bosonic case

To obtain a lower bound on the bosonic energy we will first omit the positive repulsion terms
in (1). By scaling the variables xi → Z−1xi we see that

E(N, Z, B) � NZ2e(B/Z2) (27)

where e(b) is the ground state energy of hydrogen in a homogeneous magnetic field of strength
b. For small b, we will use the diamagnetic inequality [1], which implies

e(b) � − 1
4 − b. (28)

A large-b expansion of e(b) is given in [3]. From there we obtain the following lower bound:

Lemma 2 (Lower bound for the hydrogen energy). For large enough b the ground state
energy of hydrogen, e(b), satisfies

e(b) � − 1
4 (ln b)2

(
1 +

C

ln b

)
. (29)

Note that the bosonic energy is at least of the order of NZ2, even for small B. Therefore,
the contribution to (5) is always at least O(Z), in contrast to fermions, where the energy is of
the order of N1/3Z2 for small B (this is the reason for the additional factor of Z1/3 in (6)).
Setting k = 2 we arrive at the bound given in theorem 3.

We note that since the bosonic energy is always less than the fermionic energy, theorem 3
also holds for fermions; but the bound stated there is certainly worse than that given in
theorem 2.
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